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Abstract
Normalization is not a distributive law, but just an almost-
distributive law that is a section to an actual distributive law.
We introduce distributive swaps to describe this situation and
derive synthetically multiple facts about normalization. We
then introduce Markov magmoids, a non-associative variant
of Markov categories with conditionals, having as the lead
example the category of normalized channels.
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1 Introduction
Normalization is difficult to accept in category theory. While
it induces a natural transformation that braids the distri-
bution (𝐷) and maybe (𝑀) monads, n𝑋 : 𝐷𝑀𝑋 → 𝑀𝐷𝑋 ,
it is not a distributive law. While it induces an idempo-
tent operation on substochastic channels, n : Subd(𝑋 ;𝑌 ) →
Subd(𝑋 ;𝑌 ), it is not functorial. While it induces a compo-
sition of normalized stochastic channels, n : Norm(𝑋 ;𝑌 ) ×
Norm(𝑌 ;𝑍 ) → Norm(𝑋 ;𝑍 ), it is not associative.
Normalization of subdistributions into distributions is a

fundamental operation of probability theory, but it is gener-
ally regarded as ill-behaved [Jac17]. Accepting normalization
requires a change of perspective: we must accept normali-
zation for the structure it has, not the structure it fails to
have.

And this structure is rich: normalization induces a monoi-
dal magmoid with copy-discard maps and conditionals; an
almost-distributive law interacting with the actual distribu-
tive law of subdistributions; and an action of the category of
substochastic channels into normalized channels.
This paper takes a synthetic approach to normalization.

We organize the algebra of normalization into multiple mo-
noidal category-like structures — a Markov category, a par-
tialMarkov category, a quasi-Markov category, and aMarkov
magmoid — and derive all of it from an abstraction of dis-
tributive laws.

1.1 Normalization
Definition 1 (Normalization). Normalization, n𝑋 : 𝐷𝑀𝑋 →
𝑀𝐷𝑋 , is a natural transformation defined by the following
partial function

n(𝑓 ) (𝑥) = 𝑓 (𝑥)∑
𝑥 ′∈𝑋 𝑓 (𝑥 ′) ,

which is undefined, n(𝑓 ) = ⊥, whenever ∑𝑥 ′∈𝑋 𝑓 (𝑥 ′) = 0.

Both the finitary distributionmonad and themaybemonad
are monoidal monads: their Kleisli categories, Stoch and Par,
are both copy-discard categories. Normalization inherits this
compatibility.

Proposition 2 (Normalization is monoidal). Normalization
of two distributions is the normalization of their joint indepen-
dent distribution, n(𝑓 ⊗ 𝑔) = n(𝑓 ) ⊗ n(𝑔).

𝑓 (𝑥) · 𝑔(𝑦)∑
𝑢∈𝑋,𝑣∈𝑌 𝑓 (𝑢) · 𝑔(𝑣) =

𝑓 (𝑥)∑
𝑢∈𝑋 𝑓 (𝑢) ·

𝑔(𝑦)∑
𝑣∈𝑌 𝑔(𝑣)

.

Proof. By calculation, or the discrete Fubini theorem.

n(𝑓 ⊗ 𝑔) (𝑥,𝑦) = 𝑓 (𝑥) · 𝑔(𝑦)∑
𝑢∈𝑋,𝑣∈𝑌 𝑓 (𝑢) · 𝑔(𝑣)

=
𝑓 (𝑥)∑

𝑢∈𝑋 𝑓 (𝑢) ·
𝑔(𝑦)∑
𝑣∈𝑌 𝑔(𝑣)

= n(𝑓 ) ⊗ n(𝑔). □

Were normalization to form a distributive law, its Kleisli
category, Norm, would be monoidal. The tragedy is that
normalization fails to be a distributive law, and this potential
Kleisli category is instead a Kleisli magmoid.

1.2 Normalization magmoid
Definition 3 (Unital magmoid). A unital magmoid—or, non-
associative category—consists of a collection of objects,A𝑜𝑏 𝑗 ,
and a set of morphisms,A(𝑋 ;𝑌 ), for each two objects,𝑋,𝑌 ∈
A𝑜𝑏 𝑗 , endowed with—for each 𝑋,𝑌, 𝑍 ∈ A𝑜𝑏 𝑗—composition
and identity operations

(#) : A(𝑋 ;𝑌 ) × A(𝑌 ;𝑍 ) → A(𝑋 ;𝑍 ), and
id : A(𝑋 ;𝑋 );

that are unital, meaning 𝑓 # id = 𝑓 = id # 𝑓 .

Proposition 4 (Normalization magmoid). Normalized sto-
chastic channels between sets,𝑋 → 𝑀𝐷𝑌 , form amagmoid—the
normalized distribution magmoid, Norm—where composition
of two morphisms, 𝑓 : 𝑋 → 𝑀𝐷𝑌 and 𝑔 : 𝑌 → 𝑀𝐷𝑍 , is de-
fined as

(𝑓 # 𝑔) (𝑥 ; 𝑧) =
∑

𝑣∈𝑌 𝑓 (𝑥 ; 𝑣) · 𝑔(𝑣 ; 𝑧)∑
𝑣∈𝑌

∑
𝑤∈𝑍 𝑓 (𝑥 ; 𝑣) · 𝑔(𝑣 ;𝑤) .

In other words, if we consider the associated substochastic chan-
nels, 𝑓 • : 𝑋 → 𝐷𝑀𝑌 and 𝑔• : 𝑌 → 𝐷𝑀𝑍 , it is the normaliza-
tion of their composition as subdistributions, 𝑓 #𝑔 = n(𝑓 • ;;;𝑔•).
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The two ways of associating this composition do give rise
to different results. Arguably, left-associating composition
behaves as expected,

((𝑓 # 𝑔) # ℎ) (𝑥 ;𝑤) =
∑

𝑦,𝑧 𝑓 (𝑥 ;𝑦) · 𝑔(𝑦; 𝑧) · ℎ(𝑧;𝑤)∑
𝑦,𝑧,𝑤 𝑓 (𝑥 ;𝑦) · 𝑔(𝑦; 𝑧) · ℎ(𝑧;𝑤) .

While right-associating composition may contain different
normalization constants on the numerator and the denomi-
nator, making it impossible to simplify it.

(𝑓 # (𝑔 # ℎ)) (𝑥 ;𝑤) =
∑

𝑦 𝑓 (𝑥 ;𝑦) ·
∑

𝑧 𝑔 (𝑦;𝑧 ) ·ℎ (𝑧;𝑤 )∑
𝑧,𝑤 𝑔 (𝑦;𝑧 ) ·ℎ (𝑧;𝑤 )∑

𝑦,𝑧 𝑓 (𝑥 ;𝑦) ·
∑

𝑧 𝑔 (𝑦;𝑧 ) ·ℎ (𝑧;𝑤 )∑
𝑧,𝑤 𝑔 (𝑦;𝑧 ) ·ℎ (𝑧;𝑤 )

Proposition 5. The normalized distribution magmoid is not
a category.

Definition 6 (Associating morphisms of a magmoid). A
morphism of a magmoid, ℎ ∈ A(𝑋 ;𝑌 ), is an associating
morphism when

𝑓 # (ℎ # 𝑔) = (𝑓 # ℎ) # 𝑔

for any compatible pair of morphisms, 𝑓 ∈ A(𝑋 ′;𝑋 ) and
𝑔 ∈ A(𝑌 ;𝑌 ′).

Proposition 7 (Associating morphisms form a subcategory).
Associating morphisms of a magmoid form a category with
the composition of the original magmoid.

Definition 8 (Strict monoidal magmoid). A strict monoidal
magmoid,A, consists of a monoid of objects, (A𝑜𝑏 𝑗 , ⊗, 𝐼 ), and
a collection of morphisms, A(𝑋 ;𝑌 ), for each two objects,
𝑋,𝑌 ∈ A𝑜𝑏 𝑗 . A strict monoidal magmoid is endowed with
composition, identity, and tensoring operations,

(⊗) : A(𝑋 ;𝑌 ) × A(𝑋 ′;𝑌 ′) → A(𝑋 ⊗ 𝑋 ′;𝑌 ⊗ 𝑌 ′);
(#) : A(𝑋 ;𝑌 ) × A(𝑌 ;𝑍 ) → A(𝑋 ;𝑍 );

which must satisfy the following axioms.
1. 𝑓 # id𝑌 = 𝑓 = id𝑋 # 𝑓 ;
2. 𝑓 ⊗ id𝐼 = 𝑓 = id𝐼 ⊗ 𝑓 ;
3. 𝑓 ⊗ (𝑔 ⊗ ℎ) = (𝑓 ⊗ 𝑔) ⊗ ℎ;
4. id𝑋 ⊗ id𝑌 = id𝑋⊗𝑌 ;
5. (𝑓 # 𝑔) ⊗ (𝑓 ′ # 𝑔′) = (𝑓 ⊗ 𝑓 ′) # (𝑔 ⊗ 𝑔′).

Remark 9 (Coherence for monoidal magmoids). Monoidal
magmoids are pseudomonoids of the 2-category ofmagmoids
with magmoid functors and distributing natural transforma-
tions. By the coherence theorem for pseudomonoids, every
monoidal magmoid is equivalent to a strict one.

Proposition 10. The normalized distribution magmoid is
monoidal with the cartesian product of sets and the following
partial product of morphisms.

(𝑓1 ⊗ 𝑓2) (𝑥1, 𝑥2;𝑦1, 𝑦2) = 𝑓1 (𝑥1;𝑦1) · 𝑓2 (𝑥2;𝑦2).

2 Distributive Laws
Distributive laws [Bec69], their uses and failures [ZM20], are
all well-known. Let us quickly recap. Briefly, the composition
of two monads is not a monad again — in general, the tensor
of two monoids is not a monoid again — but distributive laws
endow this composition with monad structure.

Definition 11 (Distributive law [Bec69]). A distributive law
between two monads, (𝑆, 𝜇, 𝜈) and (𝑇, 𝜇, 𝜈), on the same cat-
egory is a natural transformation 𝜓𝑋 : 𝑇𝑆𝑋 → 𝑆𝑇𝑋 that
moreover satisfies the following axioms.

Definition 12 (Monoidal distributive law). A monoidal dis-
tributive law between two monoidal monads is a distributive
law whose natural transformation is monoidal.

Theorem 13. Given two monads, 𝑆 and 𝑇 , a distributive law
between them induces a monad structure on the composite
functor 𝑆 ◦𝑇 . Given two monoidal monads, 𝑆 and 𝑇 , a monoi-
dal distributive law between them induces a monoidal monad
structure on the composite functor 𝑆 ◦𝑇 .

2.1 Subdistributions
Normalized channels can be composed inside a bigger cat-
egory: the category of subdistributions, subStoch. There is
indeed a monoidal distributive law,𝑀𝐷 → 𝐷𝑀 , that gives
rise to it.

Proposition 14 (Subdistributions). Inclusion of normalized
distributions into subdistributions, ( ) : 𝑀𝐷𝑋 → 𝐷𝑀𝑋 , de-
fined by 𝑓 • (𝑥 ;𝑦) = 𝑓 (𝑥 ;𝑦), induces a monoidal distributive
law. The Kleisli category of this distributive law is the category
of subdistributions.

Proposition 15 (Renormalization). The following equation
holds in the category of subdistributions.

n(𝑓 # 𝑔) = n(n(𝑓 ) # 𝑔).

More generally, this equation holds up to almost-sure
equivalence in any partial Markov category [DR23].

Proposition 16. The normalization magmoid admits an ac-
tion from the category of subdistributions,

(≺) : Norm(𝑋 ;𝑌 ) × Subd(𝑌 ;𝑍 ) → Norm(𝑋 ;𝑍 ),
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defined by 𝑝≺ 𝑓 = n(𝑝• # 𝑓 ). That is, 𝑝≺id = 𝑝 and 𝑝≺(𝑓 #𝑔) =
𝑝 ≺ 𝑓 ≺ 𝑔.

2.2 Partial distributions
Normalized channels are also the morphisms of another
category, albeit with a different composition operation. The
category of partial distributions, ParStoch, composes two
normalized channels, 𝑓 : 𝑋 → 𝑀𝐷𝑌 and 𝑔 : 𝑌 → 𝑀𝐷𝑍 , into
the partial operation

(𝑓 # 𝑔) (𝑥 ; 𝑧) =
{∑

𝑣∈𝑌 𝑓 (𝑥 ; 𝑣) · 𝑔(𝑣 ; 𝑧) when defined,
⊥ elsewhere.

Proposition 17. Failure of any non-total distribution, the nat-
ural transformation (−)⊥ : 𝐷𝑀 → 𝑀𝐷 , defined by 𝑓 ⊥ (𝑥) =
𝑓 (𝑥) · [𝑓 (⊥) = 0] induces a monoidal distributive law. The
Kleisli category of this distributive law is the category of partial
distributions, ParStoch.

Partial distributions are the leading example of quasi-
Markov categories [FGL+25,Moh25].While the quasi-Markov
category of distributions will play an important role later
on, let us agree that it does not address the problem of nor-
malization either: instead, it marks with failure whenever a
normalization problem is encountered.

3 Distributive Swaps
3.1 Almost-distributive laws
Normalization satisfies all of the axioms of a distributive laws,
except for one. We must drop exactly one of the multiplicati-
vity axioms of distributive laws to recover the structure of
normalization.

Definition 18 (Almost distributive law). An almost distribu-
tive law is a candidate distributive law failing one of the
axioms. More specifically, we define 𝑆𝑚-almost distributive
laws, 𝑆𝑢-almost distributive laws,𝑇𝑚-almost distributive laws,
and 𝑇𝑢-almost distributive laws, respectively.

Remark 19. A weak distributive law [Str09, GP20] is a 𝑇𝑢-
almost distributive law in this terminology. During the rest
of the text, we focus on𝑇𝑚-almost distributive laws, and we
simply call these almost-distributive laws.

Definition 20 (Monoidal almost-distributive law). Amonoi-
dal almost-distributive law between two monoidal monads is
an almost-distributive law whose underlying natural trans-
formation is monoidal.

The monoidal almost-distributive law of normalization
induces the Kleisli monoidal magmoid, Norm.

Proposition 21 (Kleisli magmoid of an almost-distributive
law). Any almost-distributive law induces a magmoid. Any
monoidal almost-distributive law induces a monoidal mag-
moid.

3.2 Distributive Swaps
Normalization satisfies all the axioms for a distributive law
𝐷𝑀 → 𝑀𝐷 except for the 𝐷-multiplicativity axiom: as a
result, its Kleisli construction is a non-associative category.
However, normalization still satisfies n(n(𝑓 ) # 𝑔) = n(𝑓 # 𝑔),
if we reinterpret each non-failing element of𝑀𝐷𝑋 as a dis-
tribution in 𝐷𝑋 . This follows from the 𝐷-multiplicativity
rule holding up to an idempotent: the distributive law of
subdistributions,𝑀𝐷 → 𝐷𝑀 , is a partial inverse. The situa-
tion follows form being a partial inverse and a distributive
law, and it also holds true for the “black-hole” or “squashing”
distributive law.
Distributive swaps abstract this situation into a single

equation. This single equation is exactly multiplicativity up
to the idempotent determined by the two distributivity law
candidates.
Definition 22 (Distributive swap). A distributive swap be-
tween two monads, ( , , 𝑆,𝑇 ), consists of a distributive
law ( ) : 𝑆𝑇 → 𝑇𝑆 and a T-multiplication almost distribu-
tive law ( ) : 𝑇𝑆 → 𝑆𝑇 that satisfy any of the following
two equivalent equations.

A distributive swap is enough to prove most of the facts
we care about on normalization.
Proposition 23 (Renormalization). Any distributive swap,
( , , 𝑆,𝑇 ), induces an idempotent, ( # ) : 𝑇𝑆 → 𝑇𝑆 .
This idempotent is left-absorptive, meaning that the following
equation holds.

Figure 1. Renormalization equation.
Theorem 24. Any distributive swap, ( , , 𝑆,𝑇 ), induces
an action of 𝑇𝑆 into 𝑆𝑇 , defined as follows.

This is a general phenomenon for distributive swaps.
Theorem 25. In the setting of a distributive swap, ( , ),
the Kleisli category of the distributive law acts on the Kleisli
magmoid of the non-multiplicative distributive law.
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4 Related work
Every tricocycloid [Gar18] gives rise to a distributive swap.
Morphisms of tricocycloids induce functors between the
related Markov constructions. In particular, the singleton
terminal tricocycloid induces the categories of non-empty
relations, may-must relations, Dijkstra relations, and rela-
tions; the universal map to the terminal tricocycloid is the
support map from distributions, subdistributions, partial dis-
tributions, and normalized distributions.
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A Proofs for Section 1 (Introduction)
Proposition 5. The normalized distribution magmoid is not
a category.

Proof. Let us produce a concrete counterexample. Consider
a coin flip, 𝑓 = 1/2 |𝑎⟩ + 1/2 |𝑏⟩, followed by a channel
that marks it with two different failure probabilities 𝑔(𝑎) =
1/3 |𝑥⟩ +2/3 |𝑧⟩ and 𝑔(𝑏) = 1/2 |𝑎⟩ +1/2 |𝑏⟩, and followed by
a channel that fails, ℎ(𝑥) = |𝑥⟩ and ℎ(𝑦) = |𝑦⟩, but ℎ(𝑧) = 0.
In this case, we have (𝑓 # 𝑔) # ℎ ≠ 𝑓 # (𝑔 # ℎ), because of

the following computation for the left-hand side,
𝑓
{ 1/2 |𝑎⟩ + 1/2 |𝑏⟩
𝑔
{ 1/6 |𝑥⟩ + 2/6 |𝑧⟩ + 1/4 |𝑦⟩ + 1/4 |𝑧⟩
ℎ
{ 2/5 |𝑥⟩ + 3/5 |𝑦⟩ .

But we have that the right-hand side composition amounts
to (𝑔 #ℎ) (𝑎) = 1 |𝑥⟩ and (𝑔 #ℎ) (𝑏) = 1 |𝑦⟩, and thus the result
is 1/2 |𝑥⟩ + 1/2 |𝑦⟩. □

Proposition 7 (Associating morphisms form a subcategory).
Associating morphisms of a magmoid form a category with
the composition of the original magmoid.

Proof. Let us first note that the identity is associating,
(𝑓 # id) # 𝑔 = 𝑓 # 𝑔 = 𝑓 # (id # 𝑔).

And let us then note that, if two compatible morphisms, ℎ1
and ℎ2, are associating, then their composition, ℎ1 #ℎ2, is also
associating.

(𝑓 # (ℎ1 # ℎ2)) # 𝑔
(i)
= ((𝑓 # ℎ1) # ℎ2) # 𝑔
(ii)
= (𝑓 # ℎ1) # (ℎ2 # 𝑔)
(iii)
= 𝑓 # (ℎ1 # (ℎ2 # 𝑔))
(iv)
= 𝑓 # ((ℎ1 # ℎ2) # 𝑔).

Where we have used (i,iii) that ℎ1 is associating; and (ii,iv)
that ℎ2 is associating. □

B Proofs for Section 2 (Distributive Laws)
Proposition 15 (Renormalization). The following equation
holds in the category of subdistributions.

n(𝑓 # 𝑔) = n(n(𝑓 ) # 𝑔).

Proposition 16. The normalization magmoid admits an ac-
tion from the category of subdistributions,

(≺) : Norm(𝑋 ;𝑌 ) × Subd(𝑌 ;𝑍 ) → Norm(𝑋 ;𝑍 ),
defined by 𝑝≺ 𝑓 = n(𝑝• # 𝑓 ). That is, 𝑝≺id = 𝑝 and 𝑝≺(𝑓 #𝑔) =
𝑝 ≺ 𝑓 ≺ 𝑔.

Proof. The result follows from the application of Theorem 15.
𝑝≺(𝑓 #𝑔) = n(𝑝◦#𝑓 #𝑔) = n(n(𝑝◦#𝑓 )#𝑔) = n(𝑝◦#𝑓 )≺𝑔 = 𝑝≺𝑓 ≺𝑔.

□

C Proofs for Section 3 (Distributive Swaps)
Proposition 23 (Renormalization). Any distributive swap,
( , , 𝑆,𝑇 ), induces an idempotent, ( # ) : 𝑇𝑆 → 𝑇𝑆 .
This idempotent is left-absorptive, meaning that the following
equation holds.

Figure 2. Renormalization equation.
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Proof. Let us prove a slightly stronger equation where we
omit the lsat composition with the distributive law ( ). In
Section C, we use (i) the multiplicativity axiom, (ii) the dis-
tributive swap equation, (iii) that distributive swaps are in-
verses, (iv) the distributive swap equation, (v) the multiplica-
tivity axiom.
This concludes the proof. □

Theorem 24. Any distributive swap, ( , , 𝑆,𝑇 ), induces
an action of 𝑇𝑆 into 𝑆𝑇 , defined as follows.

Proof. We reason by string diagrams (Section C). We use (i)
the multiplicativity axiom, (ii) that distributive swaps are
inverses, (iii) the distributive swap equation, (iv) the multi-
plicativity axiom, (v) the multiplicativity of the distributive
law, (vi) associativity of the monad, and (vii,viii) the multi-
plicativity of the distributive law.
This concludes the proof. □
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Figure 3. Proof of the abstract renormalization equation.
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Figure 4. Proof of the multiplicativity of the action induced by a distributive swap.



Elena Di Lavore and Mario Román


	Abstract
	1 Introduction
	1.1 Normalization
	1.2 Normalization magmoid

	2 Distributive Laws
	2.1 Subdistributions
	2.2 Partial distributions

	3 Distributive Swaps
	3.1 Almost-distributive laws
	3.2 Distributive Swaps

	4 Related work
	References
	A Proofs for Section 1 (Introduction)
	B Proofs for Section 2 (Distributive Laws)
	C Proofs for Section 3 (Distributive Swaps)

